Stochastische Entscheidungsmodelle I
- Typ: Vorlesung (V)
- Semester: WS 14/15
-
Ort:
10.81 HS 93 10.81 Bauingenieure, Altes Bauingenieurgebäude
-
Zeit:
Montags:
14:00 - 15:30 wöchentlich
- Dozent:
- SWS: 2
- LVNr.: 2550679
- Prüfung: 26.02.2015
Voraussetzungen | Keine. |
Beschreibung | Aufbauend auf dem Modul Einführung in das Operations Research werden quantitative Verfahren zur Planung, Analyse und Optimierung von Informationsprozessen vorgestellt. Einen Schwerpunkt bilden dabei stochastische Methoden und Modelle. Das bedeutet, dass Problemstellungen betrachtet werden, bei denen zufällige Einflüsse eine wesentliche Rolle spielen. Es wird untersucht, wie solche Systeme sich modellieren lassen, welche Eigenschaften und Kenngrößen zur Beschreibung der Modelle verwendet werden können und was für typische Problemstellungen in diesem Zusammenhang auftreten. |
Literaturhinweise | Skript Weiterführende Literatur Waldmann, K.H. , Stocker, U.M. (2004): Stochastische Modelle - eine anwendungsorientierte Einführung; Springer |
Kommentar | Lernziele Die Studierenden erwerben die Kenntnis moderner Methoden der stochastischen Modellbildung und werden dadurch in die Lage versetzt, einfache stochastische Systeme adäquat zu beschreiben und zu analysieren. Inhalt Aufbauend auf dem Modul Einführung in das Operations Research werden quantitative Verfahren zur Planung, Analyse und Optimierung von Informationsprozessen vorgestellt. Einen Schwerpunkt bilden dabei stochastische Methoden und Modelle. Das bedeutet, dass Problemstellungen betrachtet werden, bei denen zufällige Einflüsse eine wesentliche Rolle spielen. Es wird untersucht, wie solche Systeme sich modellieren lassen, welche Eigenschaften und Kenngrößen zur Beschreibung der Modelle verwendet werden können und was für typische Problemstellungen in diesem Zusammenhang auftreten. Verwendete Medien Tafel, Folien, Flash-Animationen, Simulationssoftware |
Lehrinhalt | Die Studierenden erwerben die Kenntnis moderner Methoden der stochastischen Modellbildung und werden dadurch in die Lage versetzt, einfache stochastische Systeme adäquat zu beschreiben und zu analysieren. |
Zugangsvoraussetzungen | Keine. |