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Abstract

To address the allocation of scarce resources on various projects which are driven
by partially observable processes, we develop a 2-step optimization scheme. Based on
the uncertain project stages and the waiting times for activation, it must be decided
which projects should be operated actively and, hereupon, which operation mode -
wait, test or intervene - should be selected. This problem can be decomposed in an
operational and an allocation decision which both can be optimized by means of an
infinite-horizon partially observable Markov decision process. As in general the latter
is computationally intractable, we present a heuristic allocation rule based on the well-
known MAB approach. Assuming stable projects, we establish structural results for
both the optimal operational and the heuristic allocation decision rule. In particular,
the optimal operational plan is characterized by an at most 3-action region rule which
can be transferred to the allocation rule under additional assumptions.

Keywords: Partially observable Markov decision processes; Dynamic programming;
Multi-armed bandit processes; Scheduling

1 Introduction

Multi-armed bandit (MAB) processes refer to a class of dynamic decision-making processes,
dealing with the problem of allocating scarce resources to a set of independent, competing
projects (often called arms or bandits) which can be described by controllable stochastic pro-
cesses. At any decision period, the decision-maker selects for each process a specific action,
which consumes a certain amount of resources and controls the stochastic evolution as well as
the performance of the process. In general, there are two actions available that are classified
either as active or passive depending on their resource consumption and consequences. The
objective of the decision-maker is to allocate the resources in such a way that the system’s
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performance is maximized. As such a problem, in general, is intractable, the solution of
MAB processes resorts to so-called index rules: Firstly, for each project a state-dependent
index is determined and, afterwards, the resources are allocated in the order of these index
values.

In this paper, we present a general framework for allocating resources to a set of non-
identical projects which can be operated in different modes. Hereby, we draw on a partially
observable version of the general MAB processes introduced by Glazebrook and Minty (2009)
and extend this framework to multiple active actions, i.e. for each project an intervention
and a test is available. As an example, consider a machine maintenance problem where each
machine can be either inspected or repaired, or a patient scheduling problem where each
patient can be either tested or operated. As Glazebrook (1982) proves within the classic
MAB framework of Gittins and Jones (1979), this extension of the action space does not
influence the quality of the heuristic if certain assumptions are satisfied. Another feature of
our model is that we do not just focus on the project’s partially observable stage, but also
on the time which has passed since the last active action has been scheduled.

Our general problem formulation can be decomposed in an operational level, where an
optimal action is assigned to each project’s stage, and an allocation level, where resources are
assigned to individual projects which on the other hand are necessary to execute the optimal
operational action. In particular, we first of all formulate a partially observable Markov
decision process (POMDP) for each project in order to decide whether no action, a test or an
intervention should be executed. Afterwards, on the allocation level we decide by means of a
partially observable MAB process which project should be operated according to its optimal
operational action and which project should be operated passively instead. The objective
of both optimization steps is to maximize the total expected reward. Consequently, our
formulation additionally allows the analysis of the mutual influence between the operational
decision and the resource allocation.

The aim of this article, however, is not to provide a decision support tool that can
readily be used in real time. We rather focus on capturing the most essential structures
of the decision problem. Specifically, we establish structural results for both the optimal
operational decision rule and the heuristic allocation decision rule. In particular, we show
that under the assumption of stable projects the operational decision is characterized by
an at maximum 3-action region rule. Furthermore, we are able to identify quite general
conditions which ensure that the index-based allocation decision rule follows a monotone
switching curve rule. Combining these results, we finally obtain a highly structured at most
3-action region allocation rule which is monotone in the individual project’s stage and its
waiting time.

Outline The remainder of this article is organized as follows: Section 2 gives account of
previous work. In section 3, the underlying decision problem is presented rigorously. In
section 4, we formulate the optimization problem by decomposing it into an operational and
an allocation level. For the latter, we prove that the allocation problem falls within the class
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of MAB processes. Our main result, the optimality of an at most 3-action region rule for
both the operational and the allocation decision problem, is then proven in section 5.

Notation. We use R (R+) to denote the set of (nonnegative) real numbers and N0 (N)
to denote the set of nonnegative (positive) integers. Considering (W 1,≤1) and (W 2,≤2),
a real-valued function v : W 1 → W 2 is said to be increasing (decreasing) on (W 1,≤1) if
x ≤1 x

′ implies v(x) ≤2 v(x′) (v(x) ≥2 v(x′)). By eNn , we provide an element of RN with 1
at the n-th position and 0 at all other positions (nth canonical unit vector of length N).

2 Related Literature

As our model is built on the theory of MAB processes and, additionally, bears some resem-
blance to the machine maintenance literature, our literature review refers to both fields.

Multi-armed bandit processes

A comprehensive introduction to MAB processes can be found in Mahajan and Teneketzis
(2008) or Gittins et al. (2011). In the classic version of the MAB framework, the resource
capacity as well as the resource consumption of an active action is restricted to one. If a
process is not activated, no resources are consumed and no reward is incurred. As a result
of an allocation decision, only the state of the process that is activated changes. Gittins
and Jones (1979) showed for this classic allocation problem that an index can be assigned
to each process as a function of the current state and that an optimal decision rule activates
the process with the largest index. Whittle (1988) proposed an extension of the classic
MAB model, the so-called restless MAB processes, by incorporating an arbitrary resource
capacity. In addition, passive projects may also yield a non-zero reward and change their
states. Similar to the classic approach, Whittle (1988) derived a state-dependent index for
each process and suggested that the available resources should be allocated in the order
of the index values. This index-based decision rule provides a powerful heuristic which
is known to be asymptotically optimal under certain assumptions (see Weber and Weiss,
1990). Whittle’s model and its extensions have been proposed in many application contexts.
These include the routing of unmanned military aircrafts (see, for example, Le Ny et al.,
2008), inventory routing (Archibald et al., 2009), machine maintenance (e.g. Glazebrook
et al., 2005) and queuing control (Ansell et al., 2003). Finally, Glazebrook and Minty (2009)
generalized the restless bandit processes of Whittle (1988) by additionally incorporating an
arbitrary resource consumption. The heuristic developed by Whittle (1988) can readily be
transferred to this extended framework. Finally, in the context of partially observable Markov
decision processes, we want to highlight the work of Krishnamurthy and Wahlberg (2009)
who transferred the classic MAB framework of Gittins and Jones (1979) to POMDPs and
showed by means of the likelihood ratio order that under certain assumptions the resulting
indices are monotone in the projects’ states.
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Machine maintenance in a partially observable environment

The classic machine maintenance problem deals with the optimal maintenance of a machine
whose partially observable condition gradually deteriorates. In addition to a repair action
that improves the machine’s condition, an inspection action is available which delivers ad-
ditional information about the actual wear state of the machine. The goal is to determine
a decision rule that minimizes the cost of the overall machine maintenance. An example
of such a model can be found in Monahan (1980). In this work, Monahan (1980) proved
that the optimal decision rule for this problem is in general unstructured. For the special
case of complete information, several authors, however, showed by means of the likelihood
ratio order that an optimal decision rule is composed of at most four action regions (e.g.
Ohnishi et al., 1986; Jin et al., 2005). A detailed overview of various structural results for
maintenance models can be found in Zheltova (2010).

3 The model

In an infinite-horizon decision problem, in each decision period C resources are available to
operate M heterogeneous projects, where in general the total resource consumption exceeds
the capacity if each project is operated actively. Each project b ∈ B := {1, . . . ,M} is
driven by a partially observable process. In general, we label the process parameters of an
individual project by the superscript b, but since the following discussion deals only with a
single project, we will drop this superscript in this section.

Partially observable stage process

An individual project evolves through stages i ∈ I = {1, . . . , N}, where N denotes an
absorbing stage in which no further activation is appropriate or possible (e.g. a machine
breaks down or a patient dies). Thus, stage N represents an absorbing stage in which the
operational process terminates. The current stage of the project, however, cannot be directly
observed. Instead the decision-maker makes a stage observation θ ∈ I which allows him to
estimate the actual stage.

For each project, there are three operation modes - wait, test and intervene - available,
which are summarized in the action space A = {aW , aT , aI}. The execution of each action
a ∈ A is associated with a resource consumption c(a). Specifically, we assume c(aT ), c(aI) >
c(aW ) = 0 which reflects the fact that both aT and aI represent an active engagement in
the project’s development whereas aW is a passive action. As a further consequence of the
execution of an action a in project stage i, the decision-maker collects a reward r(i, a). As
action aW does neither have an impact on the project’s development nor delivers additional
information about the project’s stage, we assume that no reward incurs, i.e. r(·, aW ) = 0.
The execution of the test aT basically has the purpose of acquiring more precise information
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about the current stage of the project. This information gain is associated with a stage-
independent reward r(·, aT ) = const.. Whether r(·, aT ) is positive or negative depends upon
the specific model application. While in general r(·, aT ) can be treated as costs, for example,
in a health care context performing a test might earn some money for the health care provider.
Lastly, aI represents a final intervention such as, for example, the replacement of a machine
or a surgery of a patient, which terminates the project’s development. We hereby assume
that the benefit of the intervention is the greater, the more the project has progressed, i.e.
the higher the index of its stage is. Thus, we have r(N − 1, aI) ≥ . . . ≥ r(1, aI). As stage N
represents the project’s end, we finally assume r(N, a) = 0 for any a ∈ A.

After having collected the one-stage reward, the project transitions to stage j with prob-
ability pa(i, j), where the decision-maker obtains an observation θ with probability qa(j, θ).
We presume that, if the project’s development is not finalized by aI , it terminates and tran-
sitions into stage N with stage-independent probability $. In this case, the collection of the
terminal reward is not possible anymore. If, however, the project is operated by aI , it indeed
transitions into stage N , but, before, the decision-maker is able to realize the reward r(i, aI).
Finally, we assume that, if the project has reached its terminal stage, the decision-maker
receives an observation which provides complete information. Altogether, it then holds that
pa(i, N) = $ for any a ∈ {aW , aT}, i 6= N , as well as paI (i, N) = 1, pa(N,N) = 1, and
qa(N,N) = 1 for any a ∈ A.

Belief state representation

It is well known that a partially observable Markov decision process can be reduced to a fully
observable decision process (see, for example, Sondik, 1978) by means of a belief state: As
the project’s stage is only partially known, the decision-maker needs to rely on an estimate
which can be expressed by a belief state x = (x1, . . . , xN) ∈ X(I), where X(I) denotes the
set of probability distributions over I. Such a belief state assigns a probability xi to each
stage i ∈ I. Then, if action a is executed in belief state x, a reward r̂(x, a) =

∑
i xir(i, a)

is realized. Analogously, in belief state x observation θ is made with probability ρa(x, θ) =∑
i,j xip

a(i, j)qa(j, θ). As a consequence of the resulting observation, the project transitions
into belief state y = T (x, a, θ), where

T (x, a, θ)j =

∑
i xip

a(i, j)ra(j, θ)

ρa(x, θ)
, j ∈ I.

Waiting time and penalty costs

We assume that for each project an optimal operational plan fOP∗ : X(I) → A, which
assigns a treatment to each belief state, is given. This operational plan serves as a guideline
for the allocation planning process. Moreover, a project is characterized by its current
waiting time for activation, which we denote by w ∈ N0. The current waiting time w causes
waiting costs k(w) ≥ 0, which we assume to be increasing in w and bounded from above.
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This concept reflects the fact that an increasing idle time of a project causes additional
costs as, for example, customers waiting for service grow dissatisfied. The waiting time of
the project evolves as follows: If aW is selected, although an active action is optimal, the
waiting time increases by 1, otherwise, it is reset to 0. Accordingly, the waiting time is set to
ζ((x,w), aW ) = w + 1 in the case of fOP∗(x) 6= aW , and ζ((x,w), a) = 0 otherwise. Finally,
penalty costs κ(x, a) >> 0 incur if an active action a ∈ {aT , aI} is selected, although the
optimal operational plan proposes to execute fOP∗(x) 6= a. As fOP∗ is supposed to serve
as a strict guideline, we assume that the penalty costs are high enough to ensure that it is
never optimal to select an active action a 6= fOP∗(x).

4 Optimization

Before we turn to the capacity allocation problem, we first of all point out how to determine
an optimal operational plan for an individual project.

4.1 Operational planning

As we only focus on the operational decision process for an individual project in this section,
we forego the superscript b again. In order to determine an optimal operational plan, we
formulate a belief state MDP resulting from the belief state reduction of the original partially
observable decision process. This MDP consists of state space X(I), action set A, transition
probability ρa(x, θ) from belief state x to T (x, a, θ), one-stage reward r̂(x, a) and discount
factor β.

A stationary (Markov) policy πOP = (fOP , fOP , . . .) is defined as a sequence of identical
decision rules fOP : X(I)→ A specifying the action a = fOP (x) to be taken. As, according
to Blackwell (1965), for each belief state MDP there exists an optimal stationary policy, it is
sufficient to determine an optimal decision rule fOP∗. Let FOP be the set of all operational
decision rules. Denote by (Xt, t ∈ N0) the state process of the belief state MDP and introduce
V OP (x) to be the maximal expected total reward starting in belief state x. Then V OP (x) is
defined by

V OP (x) = max
fOP∈FOP

EfOP

[
∞∑
t=0

βtr̂(Xt, f
OP (Xt))|X0 = x

]
, x ∈ X(I).

It is well known in dynamic programming that V OP is the unique solution to the optimality
equation

V OP (x) = max
a∈A

{
LOPV OP (x, a)

}
, x ∈ X(I), (1)

where

LOPV OP (x, a) := r̂(x, a) + β
∑
θ∈I

ρa(x, θ)V OP (T (x, a, θ)), a ∈ A.
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Moreover, each decision rule fOP∗ formed by actions fOP∗(x) maximizing the right hand side
of (1) is optimal, i.e. leads to V OP .

Since stage N is absorbing and we assume r(N, a) = 0, without loss of generality we can
set fOP∗(eNN) := aW . Furthermore, we hereafter assume that the project starts in a belief
state x ∈ X(I) where xN = 0. Due to qa(N,N) = 1 for any a ∈ A, the probability for stage
N , i.e. xN , is either 0 or 1. Consequently, we can focus our analysis on the essential belief
state space X̄(I) := {x ∈ X(I)|xN = 0}.

4.2 Capacity allocation

Readopting our superscript notation, the allocation decision process can be summarized as
follows:

i) The state of the system is a vector (x,w) = ((x1, w1), . . . , (xM , wM)) ∈ X , where
X := ×b∈B(X(Ib)× N0).

ii) The set of allocation actions is a M -vector a ∈ AM , where a is a tuple a := (a1, . . . , aM)
which comprises an action for each project.

iii) As a consequence of executing action a, a reward is realized as follows:

r̂((x,w), a) :=
∑
b∈B

r̂b(xb, ab)− kb(wb)− κb(xb, ab).

Note that rewards are bounded and β ∈ (0, 1) is the discount factor.

iv) As a further consequence of action a, an observation θb ∈ Ib is made with probability
ρa

b,b(xb, θb) for each b ∈ B. Subsequently, the state of each project evolves indepen-
dently of each other to (T b(xb, ab, θb), ζb((xb, wb), ab), where

ζb((xb, wb), ab) :=

{
wb + 1 , fOP,b∗(xb) ∈ {aT , aI} ∧ ab = aW ,
0 , otherwise.

v) There are C resources available which leads to the resource constraint
∑

b∈B c
b(ab) ≤ C.

The resource allocation problem can be modeled by means of a constrained belief state
MDP. Denote by Xt = (X1

t , . . . ,X
M
t ) and wt = (w1

t , . . . ,w
M
t ), t ∈ N0, random variables with

realizations xt ∈ X and wt ∈ NM
0 which indicate the belief state and the waiting time of

each project at time t, respectively. Let fAP : X → AM be a decision rule for the allocation
problem, and FAP be the set of all allocation rules. Then, starting in state (x,w) the
maximal expected total reward is given by

sup
fAP∈FAP

EfAP

[
∞∑
t=0

βtr̂((Xt,wt), f(Xt,wt))
∣∣(Xt,wt) = (x,w)

]
s.t.

∑
b∈B

cb(f(xt,wt)) ≤ C, (xt,wt) ∈ X , t ∈ N0.
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The state space of this problem formulation, however, is growing exponentially in the
number of projects. To that effect, which is also known as curse of dimensionality, Pa-
padimitriou and Tsitsiklis (1999) suggest that even the solution of a deterministic version of
such an allocation problem is PSPACE-hard. Correspondingly, a pure dynamic programming
approach is unlikely to be insightful and may be computationally intractable for problems of
reasonable size. Accordingly, our primary task is to develop a good heuristic decision rule.
In fact, the constrained MDP presented above falls within the class of multi-armed bandit
problems, a famously intractable class of scheduling models introduced by Gittins and Jones
(1979).

4.2.1 Heuristic allocation rule

In one of the latest extensions of the MAB class, Glazebrook and Minty (2009) present a
similar model to ours and develop project-specific priority indices, J b : X(Ib) × N0 → R.
The resulting index-based allocation rule allocates the resources as follows: The projects
are ordered according to the value of their priority indices J b(xb, wb) and, beginning with
the first, the projects are activated by executing the optimal action fOP,b∗(xb), as long as
resources are left and their priority indices are positive.

Allocation indices

In this section, we derive the priority index J b for an individual project and, therefore,
drop the superscript b again. Firstly, we introduce project-specific resource costs ν for each
consumed resource unit. Thus, in addition to the given reward structure there incur resource
costs νc(a). The priority index J b is then defined as the break-even resource costs which
establish indifference between the optimal action fOP∗(x) and the passive action aW . In
order to derive this crucial result, we firstly model an individual project process by means
of a MDP as follows:

i) The state of the project is a tuple (x,w, ν) ∈ X(I)× N0 × R.

ii) The action set is A.

iii) As a consequence of performing action a, a reward is incurred as follows:

r̃((x,w, ν), a) := r̂(x, a)− k(w)− κ((x, ν), a)− νc(a).

Note that rewards are bounded, β ∈ (0, 1) is the discount factor and κ((x, ν), a) is
assumed to be high enough to ensure that an action a ∈ {aT , aI} is suboptimal if
a 6= fOP (x).

iv) The decision-maker obtains an observation θ ∈ I with probability ρa(x, θ) and the
state of the project evolves to (T (x, a, θ), ζ((x,w), a), ν).
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Let f : X(I) × N0 × R0 → A be a decision rule, and F be the set of all decision rules.
Then, the maximal expected total reward starting in state (x,w, ν) is defined by

V (x,w, ν) = max
a∈A
{LV ((x,w, ν), a)} , (x,w, ν) ∈ X(I)× N0 × R0, (2)

where

LV ((x,w, ν), a) := r̃((x,w, ν), a) + β
∑
θ∈I

ρa(x, θ)V (T (x, a, θ), ζ((x,w), a), ν).

For each state (x,w, ν) there exists a dominant active action given by

a∗act(x,w, ν) := arg max
a∈{aT ,aI}

{LV ((x,w, ν), a)} .

According to Glazebrook (1982), we need to make sure that a∗act(x,w, ν) is independent
of ν in order to establish an index-based decision rule. Consider state (x,w, ν) and assume
fOP∗(x) = aW . Because of the penalty costs and assumption (A1), for the considered project
it is always optimal to execute action aW in the current and any future decision period.
Therefore, it is sufficient to concentrate on the essential state space P × R0, where P :={

(x,w) ∈ X̄(I)× N0|fOP∗(x) ∈ {aT , aI}
}

. If we restrict our analysis to P, the penalty costs
ensure that a∗act(x,w, ν) = fOP∗(x) and, thus, a∗act(x,w, ν) is independent of ν. Furthermore,
the following property, which is well-known as indexability, must be fulfilled.

Definition 4.1. (Whittle, 1988) A project is said to be indexable if the set of states where
the passive action is optimal in the single-project subproblem (2) increases monotonically
from the empty set to the full set of states as ν increases from −∞ to ∞.

In order to meet this requirement, we focus on stable projects by the following assumption.

(A1) It holds that T (x, aW , θ) = x for any x ∈ X(I), θ ∈ I\{N} as well as waW (x,N) = $
for any x ∈ X̄(I).

If it is optimal to select action aW in belief state x and (A1) is valid, the belief state can
only change by transitioning into the absorbing belief state eNN . Note that by (A1) we do
not assume that the actual project stage remains constant, but that the belief state does not
change. This assumption, for example, is satisfied if the underlying stage does not undergo a
definite development and the observations resulting from aW do not allow a conclusion about
the actual project stage. In the remainder of this paper, we only consider stable projects.

Lemma 4.1. Assume (A1). Then, it holds that

∂LV ((x,w, ν), fOP∗(x))

∂ν
≤ ∂LV ((x,w, ν), aW )

∂ν
.
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Proof. If in state (x,w, ν) action aW is selected and (A1) is valid, the belief state remains the
same, unless it transitions into the absorbing state eNN . As we assume fOP∗(x) ∈ {aT , aI}, it
is optimal to either select aW in each future period or to select fOP∗(x) after τ ∈ N0 periods,
unless the project has transitioned into the absorbing state. Altogether, we can conclude
that after selecting aW in state (x,w, ν) action fOP∗(x) = a will be selected after τ ∈ N0∪∞
additional periods. This yields

∂LV ((x,w, ν), aW )

∂ν
=

τ∑
t=0

βtc(aW ) + (β(1−$))τ+1∂LV ((x,w + τ + 1, ν), a)

∂ν

≥ ∂LV ((x,w + τ + 1, ν), a)

∂ν

=
∂LV ((x,w, ν), a)

∂ν
.

Lemma 4.2. Assume (A1). Then, the project’s process is indexable.

Proof. For any (x,w) it holds that ν → −∞ ⇒ f ∗(x,w, ν) = fOP∗(x) ∈ {aT , aI} and
ν →∞⇒ f ∗(x,w, ν) = aW . Applying Lemma 4.1, the indexability property is fulfilled.

Having proven indexability, we now define the priority index J as the break-even resource
costs given by

J(x,w) := inf
{
ν ∈ R0|LV ((x,w, ν), fOP∗(x)) = LV ((x,w, ν), aW )

}
.

The priority index represents the additional reward achieved by the dominant active action
in relation to the additional resource consumption.

Index-based allocation rule

Back on the allocation level, Glazebrook and Minty (2009) suggest to carry out the dominant
active action of those projects with the largest index values in descending order, until either
the resource capacity is used up or only processes with non-positive index values remain.
For the rest of the projects the passive action is selected. Subsequently, a project is operated
actively if its priority index is high enough, i.e. exceeds a particular threshold which we refer
to as critical index.

Readopting our superscript notation, this critical index of project b, which we denote
by Λb(x−b,w−b), is dependent of the states of the other projects (x−b,w−b), where x−b :=
(x1, . . . , xb−1, xb+1, . . . , xM) and w−b analogously. For any state (x,w) ∈ (×b∈BPb) the
index-based allocation rule is then given by f I = (f I,1, . . . , f I,M) ∈ F , where

f I,b(x,w) :=

{
aW , J b(xb, wb) < Λb(x−b,w−b),
fOP,b∗(xb) , J b(xb, wb) ≥ Λb(x−b,w−b).
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The proposed index rule is characterized by a boundary function below which aW and above
which fOP,b∗(xb) is selected. Such a decision rule is commonly referred to as switching curve
decision rule (Lewis, 2001).

Note that, since the index of a project is independent of the other projects, we can easily
incorporate arrivals of additional projects into our model (cf. Whittle, 1981).

5 Structural results

In this section, we first of all derive structural results for an optimal operational plan and,
therefore, initially drop the superscript notation. Consequently, we make use of the obtained
results to establish structural results for the index-based allocation rule.

In order to establish structural results, we resort to the likelihood ratio order ≤lr which
is defined as follows: For x, y ∈ X(I) it holds that y ≤lr x if xiyj ≤ xjyi for any i ≥ j.
Furthermore, y ≤lr x implies x ≤st y, where ≤st denotes the common stochastic order
(Whitt, 1979). Throughout the following sections we additionally assume that for each
a ∈ A it holds that pa(i, j)pa(i′, j′) ≥ pa(i′, j)pa(i, j′) for i, i′, j, j′ ∈ I where i ≥ i′ and j ≥ j′,
as well as qa(i, θ)qa(i′, θ′) ≥ qa(i′, θ)qa(i, θ′) for any i, i′, θ, θ′ ∈ I where i ≥ i′ and θ ≥ θ′.
This implies that it is the more likely to transition into a stage with a high index, the higher
the current stage index is, and that it is the more likely to obtain an observation, which
indicates a stage with a high index, the larger the current stage index becomes.

5.1 Optimality of an at most 3-action region operational plan

It is well known from the machine maintenance literature that an optimal operational plan
has the following property (see, for example, Ohnishi et al., 1986):

Lemma 5.1. Let x, y ∈ X̄(I) be such that x ≥lr y and let aI be an optimal action in belief
state y. Then, there exists an optimal operational plan fOP∗ ∈ FOP such that fOP∗(y) =
fOP∗(x) = aI .

To establish a more rigorous structure for fOP∗, we examine the value function V OP for
monotonicity properties.

Lemma 5.2. Assume (A1). Then, V OP (·) is increasing on (X̄(I),≤lr).

Proof. The result easily follows by induction using the arguments of Proposition 1 in Lovejoy
(1987) and the fact that the probability for transitioning into the absorbing state eNN is stage-
independent.

We are now able to prove the key result of this section, i.e. that there exists an optimal
operational plan which divides the belief state space into at most three coherent action
regions.
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Proposition 5.1. Assume (A1). Then, there exists an optimal operational plan fOP∗ ∈
FOP , which divides each segment [y, z] into at most three segments, where y, z ∈ X̄(I) are
such that z ≥lr y and the segment [y, z] is defined as

[y, z] := {x ∈ X̄(I1)|x = λy + (1− λ)z, λ ∈ [0, 1]}.

Under the assumption of fOP∗(z) = aI , for any x ∈ [y, z] there exist µ1, µ2 ∈ [y, z] (y ≤lr
µ1 ≤lr µ2 ≤lr z) such that

fOP∗(x) =


aW , y ≤lr x ≤lr µ1,
aT , µ1 ≤lr x ≤lr µ2,
aI , µ2 ≤lr x ≤lr z.

Proof. Let x, x̃ ∈ X̄(I) be such that x ≥lr x̃. Assume there exists an optimal operational
plan fOP∗ ∈ FOP such that fOP∗(x) = aT and fOP∗(x̃) = aW . Obviously, it holds that
LOPV OP (x̃, aW ) ≥ 0. Using Lemma 5.2, we obtain

V OP (x) ≥ V OP (x̃)

= LOPV OP (x̃, aT )

≥ LOPV OP (x̃, aT )− LOPV OP (x̃, aW )

≥ 0.

After executing aW in belief state x, the belief state either remains the same or transitions
into the absorbing state eNN . Since it is optimal to select aW in both of these belief states,
starting in x, it is optimal to select aW in the current and each future period. Due to
r̂(x, aW ) = r̂(eNN , aW ) = 0, we immediately get

V OP (x) = LOPV OP (x, aW )

=
∞∑
τ=0

(β(1−$))τ r̂(x, aW ) + βτ (1− (1−$)τ )r̂(eNN , aW )

= 0.

We finally obtain LOPV OP (x̃, aT )− LOPV OP (x̃, aW ) = 0 and, consequently, it is optimal to
select action aW in belief state x̃, too. Lemma 5.1 completes the proof of the Theorem.

To give a more intuitive idea of the proposed structure, in Figure 1 we schematically
map an optimal operational plan for N = 4 by means of a two-dimensional graph setting
x3 = 1−x1−x2. Using the example of the belief states y, z and ỹ, z, it can be observed that
any interval between two belief states, which are ordered with respect to ≤lr, is divided into
at most three coherent action segments. The essential belief state space can be characterized
as follows: If there is a high probability that the project is in a mild stage - here stages 1
and 2 - , action aW is optimal. If the probability for a mild stage is low, the intervention
should be carried out. If we only have a vague idea of the actual stage, it is best to perform
the test. Altogether, the presented decision rule meets our goal of a simple, intuitive, and
realistic operational plan to a large extent.
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Figure 1: Schematic illustration of the decision rule presented in Proposition 5.1.

5.2 Monotone at most 3-action region allocation plan

We now analyze the structure of the index-based allocation rule. But before we turn to the
allocation level, we derive monotonicity results for the priority index of individual projects.
For this purpose, we initially forgo the superscript notation.

In our first step, we analyze the properties of the value function V .

Lemma 5.3. Let w,w′ ∈ N0 be such that w ≥ w′. Then, it holds that V (x,w, ν) ≤ V (x,w′, ν)
for any x ∈ X(I), ν ∈ R.

Proof. The proof easily follows by induction.

Due to the penalty costs, the shape of the value function V is considerably influenced
by the underlying optimal operational plan fOP∗. As a consequence, assuming ν = 0 we are
able to show that the value function V is a monotone transformation of V OP .

Lemma 5.4. Let f ∗ ∈ F be an optimal decision rule. Then, there exists an optimal op-
erational plan fOP∗ ∈ FOP such that f ∗(x,w, 0) = fOP∗(x) for any (x,w) ∈ X(I) × N0.
Furthermore, it holds that

V OP (x)− k(w) = V (x,w, 0).

13



Proof. Due to the waiting costs and the penalty costs, it obviously holds that

V (x,w, 0) ≤ V OP (x)− k(w).

Consider now an optimal operational plan fOP∗ ∈ FOP and a decision rule f ∈ F , where
f(x,w, ν) = fOP∗(x) for any x ∈ X(I), w ∈ N0, ν ∈ R0. If decision rule f is executed, the
waiting time will be 0 in each future period and the penalty costs will be 0 in the current as
well as in each future period. This leads to the equation

Vf (x,w, 0) = V OP (x)− k(w),

where Vf denotes the expected total reward when implementing decision rule f . Finally, we
obtain

V (x,w, 0) = V OP (x)− k(w).

Consequently, there exists an optimal operational plan fOP∗ such that f ∗(x,w, 0) = fOP∗(x).

According to Lemma 5.4, there exists an optimal decision rule f ∗ ∈ F , which selects an
active action f ∗(x,w, 0) ∈ {aT , aI} in any state (x,w) that is characterized by fOP∗(x) ∈
{aT , aI}. Using Lemma 4.1, it follows that J(x,w) ≥ 0. Thus, we can focus our analysis
on non-negative resource costs ν ∈ R+

0 . Furthermore, using Lemma 5.2, Lemma 5.4 implies
that V (·, w, 0) is increasing on (X̄(I),≤lr). Due to these relationships, we can now identify
conditions under which the value function is increasing on (X̄(I) ≤lr) for any ν ∈ R+

0 .

Lemma 5.5. Let (A1) be valid and, additionally, assume k(·) ≡ 0 and c(aT ) ≥ c(aI). Then,
it holds that V (·, w, ν) is increasing on (X̄(I),≤lr) for any w ∈ N0, ν ∈ R+

0 .

Proof. Let x, y ∈ X̄(I) be such that x ≥lr y. We show by induction on t that vt(·, w, ν) is
increasing on (X̄(I),≤lr). Therefore, we assume that vt−1(·, w, ν) is already increasing on
(X̄(I),≤lr). Firstly, we focus on action aW :
It holds that r̃((x,w, ν), aW ) ≥ r̃((y, w, ν), aW ). By assumption (A1), we have T (x, aW , θ) =
x and T (y, aW , θ) = y for any θ ∈ I\{N}. If θ = N , we obtain T (x, aW , θ) = T (y, aW , θ) =
eNN . Due to k(·) ≡ 0, vt−1(T (·, aW , θ), ζ((·, w), aW ), ν) then is increasing on (X̄(I),≤lr). Since
additionally, it holds that ρaW (x,N) = ρaW (y,N), we get

Lvt−1((x,w, ν), aW ) ≥ Lvt−1((y, w, ν), aW ). (3)

As the optimal operational plan follows an at most 3-action region structure (see Proposition
5.1), we can restrict our analysis to the following cases.

i) fOP∗(x) = fOP∗(y) = aW :
Due to the penalty costs, for each optimal decision rule f ∗t ∈ F we have f ∗t (x,w, ν) =
aW , f ∗t (y, w, ν) = aW . By the help of (3), we obtain

vt(x,w, ν) ≥ vt(y, w, ν).

14



ii) fOP∗(x) = fOP∗(y) = aT :
Due to the penalty costs, for each optimal decision rule f ∗t ∈ F we have f ∗t (x,w, ν),
f ∗t (y, w, ν) ∈ {aW , aT}. Because of κ((x, ν), aT ) = κ((y, ν), aT ) = 0, it follows that
r̃((x,w, ν), aT ) ≥ r̃((y, w, ν), aT ). As T (x, aT , θ) is monotone increasing in x and θ
(cf. Lemma 1.2 in Lovejoy, 1987), T (x, aT , θ), T (y, aT , θ) ∈ X̄(I) if θ ∈ I\{N}, and
T (x, aT , N) = T (y, aT , N) = eNN otherwise, by using (3) we obtain

vt(x,w, ν) ≥ vt(y, w, ν).

iii) fOP∗(x) = fOP∗(y) = aI :
Due to the penalty costs, for each optimal decision rule f ∗t ∈ F we have f ∗t (x,w, ν),
f ∗t (y, w, ν) ∈ {aW , aI}. Because of κ((x, ν), aI) = κ((y, ν), aI) = 0, it follows that
r̃((x,w, ν), aI) ≥ r̃((y, w, ν), aI). As T (x, aI , θ) = T (y, aI , θ) = eNN , we obtain

vt−1(T (x, aI , θ), 0, ν) = vt−1(T (y, aI , θ), 0, ν)

and finally, by the help of (3), we get

vt(x,w, ν) ≥ vt(y, w, ν).

iv) fOP∗(y) = aW , f
OP∗(x) ∈ {aT , aI}:

Due to the penalty costs, for each optimal decision rule f ∗t ∈ F we have f ∗t (y, w, ν) =
aW . By the help of (3), we obtain

vt(x,w, ν) ≥vt(y, w, ν).

v) fOP∗(y) = aT , f
OP∗(x) = aI :

According to Lemma 5.2, it holds that V OP (x) ≥ V OP (y). Together with Lemma 5.4,
this implies V (x,w, 0) ≥ V (y, w, 0) as well as LV ((x,w, 0), aI) ≥ LV ((y, w, 0), aT ).
Due to c(aT ) ≥ c(aI), we get

∂LV ((x,w, ν), aI)

∂ν
= − c(aI)

≥ − c(aT ) (4)

≥ ∂LV ((y, w, ν), aT )

∂ν
.

Using inequation (4), we can conclude that LV (x,w, ν), aI) ≥ LV ((y, w, ν), aT ) for
any ν ∈ R+

0 . Because of k(·) ≡ 0, we have LV ((x,w, ν), aI) = Lvt−1((x,w, ν), aI)
as well as LV ((y, w, ν), aT ) ≥ Lvt−1((y, w, ν), aT ) for any t ∈ N. Finally, we obtain
Lvt−1((x,w, ν), aI) ≥ Lvt−1((y, w, ν), aT ).

Due to the penalty costs, for each optimal decision rule f ∗t ∈ F we have f ∗t (y, w, ν) ∈
{aW , aT}. Assuming f ∗t (y, w, ν) = aT , we obtain

vt(x,w, ν) ≥ vt(y, w, ν).

If f ∗t (y, w, ν) = aW , using (3) we obtain

vt(x,w, ν) ≥ vt(y, w, ν).
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Finally, this yields that vt(·, w, ν) is increasing on (X̄(I),≤lr) for any t ∈ N0.

Using the monotonicity properties of the value function V , we can derive various struc-
tural results for the priority index J .

Theorem 5.1. Assume (A1). Then, it holds that J(x,w) ≥ J(x,w′) for any (x,w), (x,w′) ∈
P, where w ≥ w′.

Proof. Firstly, we have fOP∗(x) = a ∈ {aT , aI} for the given optimal operational plan. If
J(x,w) = J(x,w′), the result is obviously valid. Therefore, we hereafter assume J(x,w) 6=
J(x,w′). Furthermore, we set ν := min{J(x,w), J(x,w′)} and assume ν = J(x,w), which is
equivalent to ν < J(x,w′). This yields

LV ((x,w, ν), a)− LV ((x,w, ν), aW ) = 0. (5)

On the other hand, using Lemma 5.3 we obtain

LV ((x,w, ν), aW )− k(w′) + k(w) ≤ LV ((x,w′, ν), aW )

as well as

LV ((x,w, ν), a)− LV ((x,w, ν), aW )

= LV ((x,w′, ν), a) + k(w′)− k(w)− LV ((x,w, ν), aW ) (6)

≥ LV ((x,w′, ν), a)− LV ((x,w′, ν), aW ).

Due to the expressions (5) and (6), we immediately get

LV ((x,w′, ν), a)− LV ((x,w′, ν), aW ) ≤ 0.

Using Lemma 4.1, we finally obtain ν ≥ J(x,w′), which contradicts the original assumption
ν < J(x,w′). Hence, it holds that J(x,w) ≥ J(x,w′).

Theorem 5.2. Let (A1) be valid and, additionally, assume k(·) ≡ 0 and c(aT ) ≥ c(aI).
Then, it holds that J(x,w) ≥ J(y, w) for any (x,w), (y, w) ∈ P, where x ≥lr y.

Proof. Firstly, we have fOP∗(x) = a1 ∈ {aT , aI} and fOP∗(y) = a2 ∈ {aT , aI} for the given
optimal operational plan. If J(x,w) = J(y, w), the result is obviously valid. Therefore, we
hereafter assume J(x,w) 6= J(y, w). Furthermore, we set ν := min{J(x,w), J(y, w)} and
assume ν = J(x,w), which is equivalent to ν < J(y, w). This implies, that in state (x,w, ν)
the decision-maker is indifferent between selecting aW and a1. It then holds that

LV ((x,w, ν), a1)− LV ((x,w, ν), aW ) = 0. (7)

This implies V (x,w, ν) = LV ((x,w, ν), a1). Due to the assumption ν < J(y, w), we ad-
ditionally have V (y, w, ν) = LV ((y, w, ν), a2). Using Lemma 5.5, we obtain V (x,w, ν) ≥
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V (y, w, ν). If in state (x,w, ν) or (y, w, ν) action aW is selected and (A1) is valid, the belief
state remains the same, unless it transitions into the absorbing state eNN . As we assume
fOP∗(x) = a1 and fOP∗(y) = a2, in state (x,w, ν) it is optimal to either select aW in each
future period or to select a1 after τ1 ∈ N0 additional periods, unless the project has transi-
tioned into the absorbing state by that time. The same arguments hold for state (y, w, ν).
Altogether, we can conclude that, after executing aW in state (x,w, ν) (or (y, w, ν)) action a1
(a2) will be selected after τ1 ∈ N0∪∞ (τ2 ∈ N0∪∞) additional periods. This argumentation
leads to the following inequation:

LV ((y, w, ν), a2)− LV ((y, w, ν), aW )

= LV ((y, w, ν), a2)− (β(1−$))τ2LV ((y, w + τ2, ν), a2)

≤ LV ((y, w, ν), a2)− (β(1−$))τ1LV ((y, w + τ1, ν), a2)

= LV ((y, w, ν), a2)− (β(1−$))τ1LV ((y, w, ν), a2)

= V (y, w, ν)− (β(1−$))τ1V (y, w, ν) (8)

≤ V (x,w, ν)− (β(1−$))τ1V (x,w, ν)

= LV ((x,w, ν), a1)− (β(1−$))τ1LV ((x,w, ν), a1)

= LV ((x,w, ν), a1)− LV ((x,w, ν), aW ).

Due to the expression (7) and (8), we immediately get

LV ((y, w, ν), a2)− LV ((y, w, ν), aW ) ≤ 0.

Using Lemma 4.1, we finally obtain ν ≥ J(y, w), which contradicts the original assumption
ν < J(y, w). Hence, it holds that J(x,w) ≥ J(y, w).

We can now capitalize on the results of Theorem 5.1 and Theorem 5.2 to establish analog
monotonicity results for the critical index. Readopting our superscript notation, we can
state the following Corollary.

Corollary 5.1. Let b ∈ B. The critical index Λb in state (x,w) ∈
(
×b∈BPb

)
has the

following properties:

i) If (A1) is valid for each b′ 6= b and w′ ∈ NM is such that w′b
′ ≥ wb

′
for each b′ 6= b,

then it holds that

Λb(x−b,w−b) ≤ Λb(x−b,w′
−b

).

ii) Let (A1) be valid and assume kb
′
(·) ≡ 0 and cb

′
(aT ) ≥ cb

′
(aI) for each b′ 6= b. If

y ∈
(
×b∈BX̄(Ib)

)
is such that yb

′ ≥lr xb
′

for each b′ 6= b, then it holds that

Λb(x−b,w−b) ≤ Λb(y−b,w−b).

Proof. The results immediately follow from Theorem 5.1 and Theorem 5.2.
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Finally, we are in a position to provide a well-structured index-based allocation plan
covering each state (x,w) ∈ X . On the one hand we know that, assuming (A1) for each
b ∈ B, it is optimal to select aW if fOP,b∗(xb) = aW . On the other hand, we can provide an
allocation decision for any state (x,w) ∈ (×b∈BPb) using the proposed index-based allocation
rule. If these two perspectives are combined, we obtain an index rule f I = (f I,1, . . . , f I,M)
which selects the optimal action f I,b(x,w) = aW , if fOP,b∗(xb) = aW , and action f I,b(x,w) =
f b(x,w), if (xb, wb) ∈ Pb.

When only considering states (xb, wb) ∈ Pb, we can conclude from Corollary 5.1 i) and
Theorem 5.1 that the priority index of a project and, thus, the selected action monotonically
depend on the waiting time. This means that the considered project is more likely to be
operated by aW as the waiting times of competing projects increase. Correspondingly, it
becomes the more likely that the project is operated through fTP,b∗(xb), the more its own
waiting time increases. Assuming that the project finally features the largest priority index
when its waiting time becomes very large, we can infer the concept of a critical waiting
time below which aW and above which the optimal operational action should be executed.
Analogously, Corollary 5.1 ii) and Theorem 5.2 imply that under the given assumptions
the proposed allocation rule f I partitions X̄(Ib) into a set of belief states where aW is
optimal and a set of belief states where fOP,b∗(xb) is optimal. Referring to this, action
fOP,b∗(xb) is selected by f I in any belief state xb ∈ X̄(Ib) where fOP,b∗(xb) ∈ {aT , aI} and
J b(xb, wb) ≥ Λb(x−b,w−b). For these belief states we can readily transfer the structure
of fOP,b∗ regarding the action regions of aT and aI to the allocation rule f I . Similar to
Proposition 5.1, we then obtain two threshold belief states µ1(·) and µ2(·) which divide each
interval into at most three segments.

Proposition 5.2. Let b ∈ B and assume (A1) to be true for each project. Additionally,
assume kb(·) ≡ 0 and cb(aT ) ≥ cb(aI). Then, the index-based allocation rule f I divides each
segment [yb, zb] in at most three segments, where y, z ∈

(
×Mb=1X̄(Ib)

)
are such that zb ≥lr yb.

Consider (x,w) ∈ X , where xb ∈ [yb, zb] and zb
′

= xb
′

for each b′ 6= b. Then, there exist
µb1(x

−b,w), µb2(x
−b,w) ∈ [yb, zb] (yb ≤lr µb1(x−b,w) ≤lr µb2(x−b,w) ≤lr zb) such that

f I,b(x,w) =


aW , yb ≤lr xb ≤lr µb1(x−b,w),
aT , µb1(x

−b,w) ≤lr xb ≤lr µb2(x−b,w),
aI , µb2(x

−b,w) ≤lr xb ≤lr zb.
Furthermore, the following properties hold:

a) Let w′ ∈ NM
0 be such that w′b

′ ≤ wb
′

for each b′ 6= b. Then, it follows that

µb1(x
−b,w′) ≤lr µb1(x−b,w),

µb2(x
−b,w′) ≤lr µb2(x−b,w).

b) Let s ∈
(
(×b∈BX̄(Ib)

)
be such that xb

′ ≥lr sb
′

for b′ 6= b, if kb
′
(·) ≡ 0 and cb

′
(aT ) ≥

cb
′
(aI) are valid for b′, and xb

′
= sb

′
otherwise. Then, it follows that

µb1(s
−b,w) ≤lr µb1(x−b,w),

µb2(s
−b,w) ≤lr µb2(x−b,w).
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Figure 2: Schematic illustration of the decision rule presented in Proposition 5.2.

Proof. The result immediately follows from Theorem 5.1,Theorem 5.2, Corollary 5.1 and the
above given argumentation.

In Figure 2, we schematically illustrate the proposed allocation rule for an individual
project, where N b = 4. The allocation rule f I,b only deviates from fOP,b∗ if the optimal active
action cannot be executed since other projects have a larger priority index. If project b has got
the largest index value and, thus, the highest priority, the action selected by f I,b corresponds
to the action proposed by fOP,b∗. If the priority of the considered project decreases, the set
of states where aW is selected, although action fOP,b∗(xb) 6= aW is optimal, - displayed by the
light gray area - monotonically increases with respect to ≤lr such that an at most 3-action
region structure results. Consider the two scenarios (x−b,w), (y−b,w′) ∈ (×b′ 6=bX(Ib

′
))×NM

0 ,
where xb

′ ≥lr yb
′

and wb
′
> w′b

′
for each b′ 6= b. By Proposition 5.2 the critical index

Λb(x−b,w−b) is larger than Λb(y−b,w′−b). The light gray region, therefore, is larger in
scenario (x−b,w) than in (y−b,w′).

The presented allocation rule again meets our goal to provide a simple, intuitive, and
realistic prioritization scheme to a large extent. The index rule allocates the available re-
sources based on project-specific priority indices and, after having determined the projects’
order, resorts to an at most 3-action region rule. Moreover, the priority index monotonically
depends on the state components of the considered project. Finally, the influence of a project
on the operational decisions for other projects can be expressed by monotone relationships.
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6 Conclusion

The problem of the optimal allocation of scarce resources to evolving projects is of fun-
damental importance in many application areas such as the maintenance of a machinery,
the allocation of resources to competing research projects or the management of a health
care facility. In particular, the trade-off between partially observable project development,
waiting times and resource requirements is a wide-spread problem.

In this paper, we model a partially observable allocation scenario drawing on a dynamic
optimization approach. Based on the uncertain project stages and the current waiting times,
it must decided how the projects should be operated in order to maximize the expected total
reward without exceeding the resource capacity. As the allocation problem turns out to be
computationally intractable, we propose a heuristic allocation rule based on the well-known
MAB approach for solving it.

By incorporating both the problem which project should be activated and the problem
which operation mode should be selected, our model allows a comprehensive analysis of
how the various factors influence each other. To increase the understanding of the model’s
recommendations and to simplify the implementation, the focus of our study lies on the
identification of structural properties. Specifically, we are able to prove that under the
assumption of stable projects the optimal operational plan is characterized by an at most
3-action region rule. Furthermore, we are able to show that the proposed index rule forms a
monotone switching curve. Combining these results, we obtain a highly structured allocation
rule, i.e. there again results an at most 3-action region rule, which is monotone in the state
of each other project.
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