Air Cargo Revenue Management

Combined Allotment and Spot Market Allocation Model

Diplomarbeit von Dipl.-Wi.-Ing. Bettina Walz

Betreuer: Dipl.-Wi.-Ing. Rainer Hoffmann und Dipl.-Kfm. Christopher Schmacke

Problem Definition

The air cargo industry is often referred to as a prime candidate for applying revenue management techniques. Nevertheless, air cargo revenue management is still underdeveloped compared to the prevailing systems in the air passenger industry. This is due to a relatively high complexity driven by, for instance, multidimensional capacity (volume, weight), uncertainty of available capacity, and a short booking period.

In this thesis we propose a model which integrates two decision problems of cargo revenue management: the spot market allocation problem and the allotment management task. The innovative idea of this integrated approach is that it determines a holistic solution for both planning steps which are traditionally solved in a sequential process.

Air Cargo Revenue Management

In the first stage of air cargo revenue management, routing selection, a shipment is assigned to a flight leg at a particular time. After the aircraft’s capacity has been assigned (allotment management & spot market allocation), a degree of overbooking is determined, and a decision on which shipments will be unloaded in case of an oversituation is made.

The second stage is the spot market phase. The remaining capacity is sold on the spot marketplace. Usually, the spot market rates exceed the allotment rates such that an airline can generate more revenue on the spot market.

The decision model:

\[
\text{Maximize } \sum_{i} \sum_{k} p_{i} x_{i,k} - \sum_{i} \sum_{k} c_{i} x_{i,k} - \frac{1}{2} \sum_{i} \sum_{k} \sum_{l} c_{i} c_{l} x_{i,k} x_{i,l}
\]

Subject to:

\[
\sum_{i} x_{i,k} \leq a_{i} \quad \forall k
\]

\[
\sum_{k} x_{i,k} \leq a_{i} \quad \forall i
\]

\[
x_{i,k} \leq s_{i} \quad \forall i, k
\]

\[
x_{i,k} \leq v_{i} \quad \forall i, k
\]

\[
x_{i,k} \leq m_{i} \quad \forall i, k
\]

\[
x_{i,k} \geq 0 \quad \forall i, k
\]

The Solution Procedure

1. Determine all allotment possibilities by calculating all combinations to accept the requests on the allotment market (from rejecting all of them to accepting all).

2. For each combination, calculate the expected revenue that can be generated on the spot market by applying the spot market model.

3. Use this as input for the allotment management model and determine the optimal combination.

4. By using the optimal combination as input, the spot market model provides optimal spot market decisions.

Results

An example case tested the performance of the model by using a Middle East airline’s data. The model generated a revenue increase of 29.64% to 243.13% compared to a first-come, first-served policy on four adequate routes. The combined optimization is particularly adapted for the air cargo industry since both optimization problems depend on each other. Therefore, an integrated optimization assures a maximum overall revenue improvement. As expected, it is noticeable that the model generates the highest revenue increase on routes with sparse capacity compared to a high amount of booking requests.

<table>
<thead>
<tr>
<th>Flight</th>
<th>a/c weight</th>
<th>a/c volume</th>
<th># Shipments</th>
<th>FCF</th>
<th>Combined model</th>
<th>Revenue improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4845 kg</td>
<td>12.64 m³</td>
<td>72</td>
<td>$ 2,693</td>
<td>$ 9,341</td>
<td>243.13 %</td>
</tr>
<tr>
<td>B</td>
<td>555 kg</td>
<td>3.17 m³</td>
<td>4</td>
<td>$ 375</td>
<td>$ 700</td>
<td>86.56 %</td>
</tr>
<tr>
<td>C</td>
<td>11,355 kg</td>
<td>31.05 m³</td>
<td>12</td>
<td>$ 11,153</td>
<td>$ 14,459</td>
<td>29.64 %</td>
</tr>
</tbody>
</table>

This thesis was written in co-operation with Lufthansa Consulting.